跳至主要内容

Revealing DeepSeek: A more extreme story of Chinese technological idealism

 文 | 于丽丽  Wen | Yu Lili

编辑 | 刘旌  Edit | Liu Jing

中国的7家大模型创业公司中,DeepSeek(深度求索)最不声不响,但它又总能以出其不意的方式被人记住。
Of the 7 major model startups in China, DeepSeek is the least silent, but it can always be remembered in an unexpected way.

一年前,这种出其不意源自它背后的量化私募巨头幻方,是大厂外唯一一家储备万张A100芯片的公司,一年后,则来自它才是引发中国大模型价格战的源头。
A year ago, this kind of quantitative private equity giant fantasies that did not mean to derive behind it was the only company outside the large factory that reserved 10,000 A100 chips. One year later, it came from it to trigger the source of China's big model price war.

在被AI连续轰炸的5月,DeepSeek一跃成名。起因是他们发布的一款名为DeepSeek V2的开源模型,提供了一种史无前例的性价比:推理成本被降到每百万token仅 1块钱,约等于Llama3 70B的七分之一,GPT-4 Turbo的七十分之一。
In May, which was bombarded by AI, Deepseek became famous. The reason is that they released an open source model called DeepSeek V2, which provides an unprecedented cost-effectiveness: the reasoning cost of reasoning is reduced to only 1 yuan per million token, which is about one-seventh of LLAMA3 70B, GPT-4 4 Turbo's seventy -tenth.

DeepSeek被迅速冠以“AI界拼多多”之称的同时,字节、腾讯、百度、阿里等大厂也按耐不住,纷纷降价。中国大模型价格战由此一触即发。
At the same time that DEEPSEEK was quickly crowned as "AI Fighting Duoduo", the large manufacturers such as bytes, Tencent, Baidu, Ali and other large manufacturers were also unbearable, and the prices were reduced. The price war in China is from this.

弥漫的硝烟其实掩盖了一个事实:与很多大厂烧钱补贴不同,DeepSeek是有利润的。
The diffuse smoke actually covered a fact: Unlike many large manufacturers burning money subsidies, Deepseek is profitable.

这背后,是DeepSeek对模型架构进行了全方位创新。它提出的一种崭新的MLA(一种新的多头潜在注意力机制)架构,把显存占用降到了过去最常用的MHA架构的5%-13%,同时,它独创的DeepSeekMoESparse结构,也把计算量降到极致,所有这些最终促成了成本的下降。
Behind this is that Deepseek has innovated a full range of model architecture. It proposes a brand new MLA ( a new poly head potential attention mechanism ) architecture, which has reduced the memory of 5%-13%of the most commonly used MHA architecture in the past. The quantity dropped to the extreme, all of which eventually contributed to the decline in cost.

在硅谷,DeepSeek被称作“来自东方的神秘力量”。SemiAnalysis首席分析师认为,DeepSeek V2论文“可能是今年最好的一篇”。OpenAI前员工Andrew Carr认为论文“充满惊人智慧”,并将其训练设置应用于自己的模型。而OpenAI前政策主管、Anthropic联合创始人Jack Clark认为,DeepSeek“雇佣了一批高深莫测的奇才”,还认为中国制造的大模型,“将和无人机、电动汽车一样,成为不容忽视的力量。”
In Silicon Valley, Deepseek is called "mysterious power from the East". The chief analyst of Semianalysis believes that the DeepSeek V2 paper "may be the best article this year." Former OpenAI employee Andrew Carr believes that the paper is "full of amazing wisdom" and applies its training settings to its own model. Jack Clark, the former OPENAI policy director and co -founder of Anthropic, believes that DeepSeek "hired a group of unpredictable wizards" and also believed that the large model made in China, "will be like drones and electric vehicles, which will become unavoidable. strength."

在基本由硅谷牵动故事进展的AI浪潮里,这是罕有的情形。多位行业人士告诉我们,这种强烈的反响源自架构层面的创新,是国产大模型公司乃至全球开源基座大模型都很罕见的尝试。一位AI研究者表示,Attention架构提出多年来,几乎未被成功改过,更遑论大规模验证。“这甚至是一个做决策时就会被掐断的念头,因为大部分人都缺乏信心。”
This is a rare situation in the wave of AI that basically touched the story by Silicon Valley. A number of industry people told us that this strong response originated from the architecture level innovation, which is a rare attempt to be a rare attempt to make large domestic model companies and even global open source base models. A AI researcher said that the Attention architecture has been proposed for many years, and it has almost been successfully changed, let alone large -scale verification. "This is even a idea of ​​being cut off when making decisions, because most people lack confidence."

而另一方面,国产大模型之前很少涉足架构层面的创新,也是因为很少有人主动去击破那样一种成见:美国更擅长从0-1的技术创新,而中国更擅长从1-10的应用创新。何况这种行为非常不划算——新一代模型,过几个月自然有人做出来,中国公司只要跟随、做好应用即可。对模型结构进行创新,意味着没有路径可依,要经历很多失败,时间、经济成本都耗费巨大。
On the other hand, the domestic big model rarely involved the innovation at the architecture level, because few people took the initiative to break such a prejudice: the United States is better at technological innovation from 0-1, and China is better at 1-10 Application innovation. Besides, this behavior is very uncomfortable -a new generation model, naturally someone will do it in a few months. As long as Chinese companies follow and do well. Innovating the model structure means that there is no path to rely on, and a lot of failure is to go through a lot of failures. Time and economic costs are huge.

DeepSeek显然是逆行者。在一片认为大模型技术必然趋同,follow是更聪明捷径的喧哗声中,DeepSeek看重“弯路”中积累的价值,并认为中国的大模型创业者除应用创新外,也可以加入到全球技术创新的洪流中。
Deepseek is obviously retrograde. In a piece of big model technology that is inevitable, Follow is the noise of more smart shortcuts. DeepSeek values ​​the value accumulated in the "detours", and believes that in addition to application innovation, Chinese big model entrepreneurs can also join global technological innovation. In the torrent.

DeepSeek的很多抉择都与众不同。截至目前,7家中国大模型创业公司中,它是唯一一家放弃“既要又要”路线,至今专注在研究和技术,未做toC应用的公司,也是唯一一家未全面考虑商业化,坚定选择开源路线甚至都没融过资的公司。这些使得它经常被遗忘在牌桌之外,但在另一端,它又经常在社区被用户“自来水”式传播。
Many of DeepSeek's choices are different. As of now, among the seven major Chinese model startups, it is the only company that has given up the "both must and also" route and is focusing on research and technology. The open source route has not even finished the company. These are often forgotten from the table, but at the other end, it is often spread by users by users in the community.

DeepSeek究竟是如何炼成的?我们为此访谈了甚少露面的DeepSeek创始人梁文锋。
How is DeepSeek made? We interviewed Liang Wenfeng, the founder of Deepseek, who rarely appeared.

这位从幻方时代,就在幕后潜心研究技术的80后创始人,在DeepSeek时代,依旧延续着他的低调作风,和所有研究员一样,每天“看论文,写代码,参与小组讨论”。
This era of post -80s, who has been studying technology behind the scenes, still continues his low -key style in the DEEPSEEK era. Like all researchers, every day, "look at the dissertation, write code, and participate in group discussions."

和很多量化基金创始人都有过海外对冲基金履历,多出身物理、数学等专业不同的是,梁文锋一直是本土背景,早年就读的也是浙江大学电子工程系人工智能方向。
Different from the founders of many quantitative funds have the overseas hedge fund resumes. Different from the majors of physics and mathematics, Liang Wenfeng has always been a local background. In his early years, he also studied artificial intelligence in the Department of Electronic Engineering of Zhejiang University.

多位行业人士和DeepSeek研究员告诉我们,梁文锋是当下中国AI界非常罕见的“兼具强大的infra工程能力和模型研究能力,又能调动资源”、“既可以从高处做精准判断,又可以在细节上强过一线研究员”的人,他拥有“令人恐怖的学习能力”,同时又“完全不像一个老板,而更像一个极客”。
Several industry insiders and deepseek researcher told us that Liang Wenfeng is a very rare "strong Infra engineering ability and model research ability in the Chinese AI industry, but also can mobilize resources." Those who are more than a front -line researcher in details ", he has" terrifying learning ability ", and at the same time," is not like a boss at all, but more like a geek. "

这是一次尤为难得的访谈。访谈里,这位技术理想主义者,提供了目前中国科技界特别稀缺的一种声音:他是少有的把“是非观”置于“利害观”之前,并提醒我们看到时代惯性,把“原创式创新”提上日程的人。
This is a particularly rare interview. In the interview, this technical idealist provides a very scarce voice in the Chinese scientific and technological community: he is rare to put the "right or wrong view" before the "concept of interest", and remind us to see the inertia of the times. "Original Innovation" on the agenda.

一年前,DeepSeek刚下场时,我们初次访谈了梁文锋 :《疯狂的幻方:一家隐形AI巨头的大模型之路》 。如果说当时那句「务必要疯狂地怀抱雄心,且还要疯狂地真诚」还是一句美丽的口号,一年过去,它已经在成为一种行动。
One year ago, when DeepSeek first ended, we first interviewed Liang Wenfeng: "Crazy Fantasy Fang: The Road to a Big Model of an Invisible AI Giant". If the phrase "must be embraced madly, and to be madly sincere" is still a beautiful slogan, one year has passed, it is already becoming a action.

以下为对话部分:  The following is the dialogue part:

价格战第一枪是怎么打响的?  How did the first shot of the price war began?

「暗涌」:DeepSeek V2模型发布后,迅速引发一场血雨腥风的大模型价格战,有人说你们是行业的一条鲶鱼。
"Dark Surge": After the release of the Deepseek V2 model, it quickly triggered a big model price war with a bloody storm. Some people said that you are a catfish in the industry.

梁文锋:我们不是有意成为一条鲶鱼,只是不小心成了一条鲶鱼。
Liang Wenfeng : We don't intend to be a catfish, but we accidentally become a catfish.

「暗涌」:这个结果让你们意外吗?  "Dark": Is this result surprised you?

梁文锋:非常意外。没想到价格让大家这么敏感。我们只是按照自己的步调来做事,然后核算成本定价。我们的原则是不贴钱,也不赚取暴利。这个价格也是在成本之上稍微有点利润。
Liang Wenfeng : Very unexpected. I did not expect the price to be so sensitive. We just do things according to our own pace, and then calculate the cost. Our principles are not money or profit. This price is also a little profitable on the cost.

「暗涌」:5天后智谱AI就跟进了,之后是字节、阿里、百度、腾讯等大厂。
"Dark Surge": After 5 days, the wisdom spectrum AI followed up, and then large factories such as bytes, Ali, Baidu, Tencent and other large manufacturers.

梁文锋:智谱AI降的是一个入门级产品,和我们同级别的模型仍然收费很贵。字节是真正第一个跟进的。旗舰模型降到和我们一样的价格,然后触发了其它大厂纷纷降价。因为大厂的模型成本比我们高很多,所以我们没想到会有人亏钱做这件事,最后就变成了互联网时代的烧钱补贴的逻辑。
Liang Wenfeng : The wisdom spectrum AI reduces an entry -level product, and the model of our same level is still expensive. The byte is the first to follow up. The flagship model dropped to the same price as us, and then triggered other large manufacturers to reduce prices. Because the cost of the model of the big factory is much higher than us, we did not expect that someone would lose money to do this, and finally became the logic of burning subsidies in the Internet era.

「暗涌」:外部看来,降价很像在抢用户,互联网时代的价格战通常如此。
"Dark surge": It seems that the price reduction is very similar to being robbing users. The price war in the Internet era is usually the case.

梁文锋:抢用户并不是我们的主要目的。我们降价一方面是因为我们在探索下一代模型的结构中,成本先降下来了,另一方面也觉得无论API,还是AI,都应该是普惠的、人人可以用得起的东西。
Liang Wenfeng : Raising users is not our main purpose. On the one hand, our price cut is because in the structure of the next generation of models, the cost drops first, and on the other hand, we also feel that both the API or AI should be inclusive and everyone can use things.

「暗涌」:在这之前,大部分中国公司都会直接copy这一代的 Llama结构去做应用,为什么你们会从模型结构切入?
"Dark Surge": Before that, most Chinese companies will directly Copy's LLAMA structure to apply. Why do you cut in from the model structure?

梁文锋:如果目标是做应用,那沿用 Llama结构,短平快上产品也是合理选择。但我们目的地是AGI,这意味着我们需要研究新的模型结构,在有限资源下,实现更强的模型能力。这是scale up到更大模型所需要做的基础研究之一。除了模型结构,我们还做了大量其他的研究,包括怎么构造数据,如何让模型更像人类等,这都体现在我们发布的模型里。另外,Llama的结构,在训练效率和推理成本上,和国外先进水平估计也已有两代差距。
Liang Wenfeng : If the goal is to apply it, the LLAMA structure is used, and the product is also a reasonable choice. But our destination is AGI, which means that we need to study new model structures and achieve stronger model capabilities under limited resources. This is one of the basic research that Scale UP needs to do a larger model. In addition to the model structure, we have also done a lot of other studies, including how to construct data and how to make the model more like humans, which are reflected in the model we posted. In addition, the structure of LLAMA, in terms of training efficiency and reasoning costs, has two generations gap with advanced foreign levels.

「暗涌」:这种代差主要来自哪里?  "Dark Surge": Where does this difference come from?

梁文锋:首先训练效率有差距。我们估计,国内最好的水平和国外最好的相比,模型结构和训练动力学上可能有一倍的差距,光这一点我们要消耗两倍的算力才能达到同样效果。另外数据效率上可能也有一倍差距,也就是我们要消耗两倍的训练数据和算力,才能达到同样的效果。合起来就要多消耗4倍算力。我们要做的,正是不停地去缩小这些差距。
梁文锋:首先训练效率有差距。 We estimate that compared with the best level in China and the best abroad, there may be double the model structure and training dynamics. We have to consume twice the computing power to achieve the same effect. In addition, there may be double gap in data efficiency, that is, we have to consume twice the training data and computing power to achieve the same effect. It takes 4 times more computing power to close. What we have to do is constantly narrowing these gaps.

「暗涌」:大部分中国公司都选择既要模型又要应用,为什么DeepSeek目前选择只做研究探索?
"Dark Yong": Most Chinese companies choose to use both models and application. Why is DeepSeek choose to only do research and exploration?

梁文锋:因为我们觉得现在最重要的是参与到全球创新的浪潮里去。过去很多年,中国公司习惯了别人做技术创新,我们拿过来做应用变现,但这并非是一种理所当然。这一波浪潮里,我们的出发点,就不是趁机赚一笔,而是走到技术的前沿,去推动整个生态发展。
Liang Wenfeng : Because we feel that the most important thing now is to participate in the wave of global innovation. In the past many years, Chinese companies have been accustomed to making technological innovation. We have taken it for application monetization, but this is not a matter of course. In this wave of waves, our starting point is not to take the opportunity to make a fortune, but to the forefront of technology to promote the entire ecological development.

「暗涌」:互联网和移动互联网时代留给大部分人的惯性认知是,美国擅长搞技术创新,中国更擅长做应用。
"Dark Surge": The inertia cognition left by most people in the Internet and mobile Internet era is that the United States is good at engaging in technological innovation and China is better at applying.

梁文锋:我们认为随着经济发展,中国也要逐步成为贡献者,而不是一直搭便车。过去三十多年IT浪潮里,我们基本没有参与到真正的技术创新里。我们已经习惯摩尔定律从天而降,躺在家里18个月就会出来更好的硬件和软件。Scaling Law也在被如此对待。
Liang Wenfeng : We believe that with the development of the economy, China must gradually become contributors, rather than always taking stools. In the IT wave in the past 30 years, we have basically not participated in real technological innovation. We are accustomed to falling from the sky, and we will come out for better hardware and software when we lie at home for 18 months. Scaling Law is also treated like this.

但其实,这是西方主导的技术社区一代代孜孜不倦创造出来的,只因为之前我们没有参与这个过程,以至于忽视了它的存在。
But in fact, this was created by the Western -led technological community generation, because we did not participate in this process before, so that we ignored its existence.

真正的差距不是一年或两年,而是原创和模仿之差  The real gap is not one year or two years, but the difference between original and imitation

「暗涌」:为什么DeepSeek V2会让硅谷的很多人惊讶?
"Dark Surge": Why does DeepSeek V2 surprise many people in Silicon Valley?

梁文锋:在美国每天发生的大量创新里,这是非常普通的一个。他们之所以惊讶,是因为这是一个中国公司,在以创新贡献者的身份,加入到他们游戏里去。毕竟大部分中国公司习惯follow,而不是创新。
Liang Wenfeng : This is a very ordinary one in the large number of innovations in the United States every day. The reason why they were surprised was because it was a Chinese company, joining the game as an innovative contributor to their games. After all, most Chinese companies are used to Follow, not innovation.

「暗涌」:但这种选择放在中国语境里,也过于奢侈。大模型是一个重投入游戏,不是所有公司都有资本只去研究创新,而不是先考虑商业化。
"Dark Surging": But this choice is too luxurious in the context of China. Large models are a heavy -duty game. Not all companies have capital only to research innovation, rather than considering commercialization first.

梁文锋:创新的成本肯定不低,过去那种拿来主义的惯性也和过去的国情有关。但现在,你看无论中国的经济体量,还是字节、腾讯这些大厂的利润,放在全球都不低。我们创新缺的肯定不是资本,而是缺乏信心以及不知道怎么组织高密度的人才实现有效的创新。
Liang Wenfeng : The cost of innovation is definitely not low. The inertia of the past doctrine is also related to the past national conditions. But now, you can see that regardless of China's economy, or the profits of large factories such as bytes and Tencent, it is not low in the world. We must not be capital, but lack confidence and do not know how to organize high -density talents to achieve effective innovation.

「暗涌」:为什么中国公司——包括不缺钱的大厂,这么容易把快速商业化当第一要义?
"Dark Surge": Why does a Chinese company -including a large factory that is not short of money, so it is easy to take fast commercialization as the first priority?

梁文锋:过去三十年,我们都只强调赚钱,对创新是忽视的。创新不完全是商业驱动的,还需要好奇心和创造欲。我们只是被过去那种惯性束缚了,但它也是阶段性的。
Liang Wenfeng : In the past three decades, we have all emphasized to make money and ignore innovation. Innovation is not entirely commercially driven, but also needs curiosity and creativity. We are just bound by the inertia of the past, but it is also staged.

「暗涌」:但你们究竟是一个商业组织,而非一个公益科研机构,选择创新,又通过开源分享出去,那要在哪里形成护城河?像5月这次MLA架构的创新,也会很快被其他家copy吧?
"Dark": But you are a commercial organization, not a public welfare scientific research institution, choose innovation, and share it through open source. Where can you form a moat? Like the innovation of the MLA architecture in May, will it be Copy soon?

梁文锋:在颠覆性的技术面前,闭源形成的护城河是短暂的。即使OpenAI闭源,也无法阻止被别人赶超。所以我们把价值沉淀在团队上,我们的同事在这个过程中得到成长,积累很多know-how,形成可以创新的组织和文化,就是我们的护城河。
Liang Wenfeng : In the face of disruptive technology, the moat formed by the closed source is short. Even if the OpenAI is closed, it cannot be stopped by others. Therefore, we have precipitated value on the team. Our colleagues have grown in the process, accumulating a lot of Know-How, to form an innovative organization and culture, which is our moat.

开源,发论文,其实并没有失去什么。对于技术人员来说,被follow是很有成就感的事。其实,开源更像一个文化行为,而非商业行为。给予其实是一种额外的荣誉。一个公司这么做也会有文化的吸引力。
Open source, papers, actually did not lose anything. For technicians, it is very accomplished by Follow. In fact, open source is more like a cultural behavior, not a business behavior. Giving is actually an additional honor. A company does this will also be attractive.

「暗涌」:你怎么看类似朱啸虎的这种市场信仰派观点?
"Dark": What do you think of the market beliefs like Zhu Xiaohu?

梁文锋:朱啸虎是自洽的,但他的打法更适合快速赚钱的公司,而你看美国最赚钱的公司,都是厚积薄发的高科技公司。
Liang Wenfeng : Zhu Xiaohu is self -consistent, but his play is more suitable for fast -making companies, and you see that the most profitable companies in the United States are high -tech companies.

「暗涌」:但做大模型,单纯的技术领先也很难形成绝对优势,你们赌的那个更大的东西是什么?
"Dark Yong": But when making a big model, it is difficult to form an absolute advantage with simple technical leadership. What is the bigger thing you bet?

梁文锋我们看到的是中国AI不可能永远处在跟随的位置。我们经常说中国AI和美国有一两年差距,但真实的gap是原创和模仿之差。如果这个不改变,中国永远只能是追随者,所以有些探索也是逃不掉的。
Liang Wenfeng : What we see is that China AI cannot always follow. We often say that Chinese AI and the United States have a gap between one or two years, but the real Gap is the difference between original and imitation. If this does not change, China can only be followers, so some explorations cannot escape.

英伟达的领先,不只是一个公司的努力,而是整个西方技术社区和产业共同努力的结果。他们能看到下一代的技术趋势,手里有路线图。中国AI的发展,同样需要这样的生态。很多国产芯片发展不起来,也是因为缺乏配套的技术社区,只有第二手消息,所以中国必然需要有人站到技术的前沿。
Nvidia's lead is not just the efforts of a company, but the result of the joint efforts of the entire Western technology community and industry. They can see the technical trend of the next generation and have a roadmap in their hands. The development of Chinese AI also needs such an ecology. Many domestic chips cannot develop, and because of lack of supporting technology communities, there are only second -hand news, so China must need to stand at the forefront of technology.

更多的投入并不一定产生更多的创新  More investment does not necessarily produce more innovation

「暗涌」:现在的DeepSeek有一种OpenAI早期的理想主义气质,也是开源的。后边你们会选择闭源吗?OpenAI和Mistral都有过从开源到闭源的过程。
"Dark": Now Deepseek has an early idealism of OpenAI, which is also open source. Will you choose to close the source? Both Openai and Mistral have the process from open source to closed sources.

梁文锋:我们不会闭源。我们认为先有一个强大的技术生态更重要。
Liang Wenfeng : We will not close the source. We think it is more important to have a powerful technical ecology.

「暗涌」:你们有融资计划吗?看有媒体报道,幻方对DeepSeek有独立拆分上市的计划,硅谷的AI创业公司,最终也都难免要和大厂绑定。
"Dark": Do you have a financing plan? Seeing media reports, the magic party has a plan to separate the listing of Deepseek. The AI ​​startups in Silicon Valley will inevitably bind to the large manufacturers in the end.

梁文锋:短期内没有融资计划,我们面临的问题从来不是钱,而是高端芯片被禁运。
Liang Wenfeng : There is no financing plan in the short term. The problems we face are never money, but that high -end chips are embarked down.

「暗涌」:很多人认为,做AGI和做量化是完全不同的两件事,量化可以闷声去做,但AGI可能更需要高举高打,需要结盟,这样可以让你的投入变大。
"Dark Surge": Many people think that doing AGI and quantification are two things that are completely different. Quantitatives can be done with a stuffy voice, but AGI may need to hold high beating and all alliances, which can make your investment larger.

梁文锋:更多的投入并不一定产生更多的创新。否则大厂可以把所有的创新包揽了。
Liang Wenfeng : More investment does not necessarily produce more innovation. Otherwise, big manufacturers can take over all innovations.

「暗涌」:你们现在不做应用,是因为你们没有运营的基因吗?
"Undercurrent": You don't make applications now, is it because you don't have the genes to operate?

梁文锋:我们认为当前阶段是技术创新的爆发期,而不是应用的爆发期。长远来说,我们希望形成一种生态,就是业界直接使用我们的技术和产出,我们只负责基础模型和前沿的创新,然后其它公司在DeepSeek 的基础上构建toB、toC的业务。如果能形成完整的产业上下游,我们就没必要自己做应用。当然,如果需要,我们做应用也没障碍,但研究和技术创新永远是我们第一优先级。
Liang Wenfeng : We believe that the current stage is an explosion period of technological innovation, not an explosion period of application. In the long run, we hope to form an ecosystem in which the industry directly uses our technology and output. We are only responsible for basic models and cutting-edge innovations, and then other companies build toB and toC businesses based on DeepSeek. If we can form a complete upstream and downstream industry, we don’t need to make applications ourselves. Of course, if necessary, there is no obstacle for us to apply it, but research and technological innovation will always be our first priority.

「暗涌」:但选择API的话,为什么选择DeepSeek,而不是大厂?
"Undercurrent": But when it comes to choosing API, why choose DeepSeek instead of big manufacturers?

梁文锋:未来的世界很可能是专业化分工的,基础大模型需要持续创新,大厂有它的能力边界,并不一定适合。
Liang Wenfeng : The world of the future is likely to be one of specialization and division of labor. Basic large-scale models require continuous innovation. Large manufacturers have their own capability boundaries and may not necessarily be suitable.

「暗涌」:但技术真的可以拉开差距吗?你也说过并不存在绝对的技术秘密。
"Undercurrent": But can technology really widen the gap? You also said that there is no absolute technical secret.

梁文锋:技术没有秘密,但重置需要时间和成本。英伟达的显卡,理论上没有任何技术秘密,很容易复制,但重新组织团队以及追赶下一代技术都需要时间,所以实际的护城河还是很宽。
Liang Wenfeng : There is no secret in technology, but resetting requires time and cost. Nvidia's graphics cards theoretically do not have any technical secrets and are easy to copy, but it takes time to reorganize the team and catch up with next-generation technology, so the actual moat is still very wide.

「暗涌」:你们降价后,字节率先跟进,说明他们还是感受到某种威胁。你怎么看创业公司与大厂竞争的新解法?
"Undercurrent": After you lowered the price, Byte followed up first, which shows that they still feel some kind of threat. What do you think of the new solution for startups to compete with big companies?

梁文锋:说实话我们不太care这件事,只是顺便做了这件事。提供云服务不是我们的主要目标。我们的目标还是去实现AGI。
Liang Wenfeng : To be honest, we don’t care much about this matter, we just did it by the way. Providing cloud services is not our main goal. Our goal is still to achieve AGI.

目前没有看到什么新解法,但大厂也没有明显占优。大厂有现成的用户,但它的现金流业务也是它的包袱,也会让它成为随时被颠覆的对象。
I haven’t seen any new solutions so far, but the big manufacturers don’t have a clear advantage either. Big manufacturers have ready-made users, but their cash flow business is also a burden, making them vulnerable to subversion at any time.

「暗涌」:你怎么看DeepSeek之外的6家大模型创业公司的终局?
"Undercurrent": What do you think of the outcome of the six large-model startups besides DeepSeek?

梁文锋:可能活下来2到3家。现在都还处在烧钱阶段,所以那些自我定位清晰、更能精细化运营的,更有机会活下来。其它公司可能会脱胎换骨。有价值的东西不会烟消云散,但会换一种方式。
Liang Wenfeng : Maybe 2 to 3 families will survive. We are still in the money-burning stage, so those with clear self-positioning and more refined operations have a better chance of surviving. Other companies may be reinvented. Things of value will not disappear, but they will change.

「暗涌」:幻方时代,面对竞争的姿态就被评价为“我行我素”,很少在意横向比较。关于竞争,你思考的原点是什么?
"Undercurrent": In the era of magic square, the attitude in the face of competition was evaluated as "going one's own way" and rarely paying attention to horizontal comparisons. Regarding competition, what is the starting point of your thinking?

梁文锋:我经常思考的是,一个东西能不能让社会的运行效率变高,以及你能否在它的产业分工链条上找到擅长的位置。只要终局是让社会效率更高,就是成立的。中间很多都是阶段性的,过度关注必然眼花缭乱。
Liang Wenfeng : What I often think about is whether a thing can make society more efficient, and whether you can find a position where you are good at it in its industrial division of labor chain. As long as the end result is to make society more efficient, it is valid. There are many stages in between, and excessive attention will inevitably make you dizzy.

一群做“高深莫测”事的年轻人  A group of young people who do "unfathomable" things

「暗涌」:OpenAI前政策主管、Anthropic联合创始人Jack Clark认为DeepSeek雇佣了“一批高深莫测的奇才”,做出DeepSeek v2的是怎样一群人?
"Undercurrent": Jack Clark, former policy director of OpenAI and co-founder of Anthropic, believes that DeepSeek hired "a group of unpredictable wizards". What kind of people made DeepSeek v2?

梁文锋:并没有什么高深莫测的奇才,都是一些Top高校的应届毕业生、没毕业的博四、博五实习生,还有一些毕业才几年的年轻人。
Liang Wenfeng : There are no mysterious geniuses. They are all recent graduates from top universities, interns with Ph.D. 4 and Ph. 5 who have not graduated, and some young people who have graduated only a few years ago.

「暗涌」:很多大模型公司都执着地去海外挖人,很多人觉得这个领域前50名的顶尖人才可能都不在中国的公司,你们的人都来自哪里?
"Undercurrent": Many large model companies are persistent in poaching people overseas. Many people think that the top 50 talents in this field may not be in Chinese companies. Where do your people come from?

梁文锋:V2模型没有海外回来的人,都是本土的。前50名顶尖人才可能不在中国,但也许我们能自己打造这样的人。
Liang Wenfeng : There are no people who came back from overseas in the V2 model, they are all local. The top 50 talents may not be in China, but maybe we can build such people ourselves.

「暗涌」:这次MLA创新是如何发生的?听说idea最早来自一个年轻研究员的个人兴趣?
"Undercurrent": How did this MLA innovation happen? I heard that the idea first came from the personal interest of a young researcher?

梁文锋:在总结出Attention架构的一些主流变迁规律后,他突发奇想去设计一个替代方案。不过从想法到落地,中间是一个漫长的过程。我们为此组了一个team,花了几个月时间才跑通。
Liang Wenfeng : After summarizing some mainstream changes in the Attention architecture, he suddenly wanted to design an alternative. However, it is a long process from idea to implementation. We formed a team for this and it took us several months to get through it.

「暗涌」:这种发散性灵感的诞生和你们完全创新型组织的架构很有关系。幻方时代,你们就很少自上而下地指派目标或任务。但AGI这种充满不确定性的前沿探索,是否多了管理动作?
"Undercurrent": The birth of this divergent inspiration is closely related to the structure of your completely innovative organization. In the Magic Square era, you rarely assign goals or tasks from top to bottom. But does AGI, a frontier exploration full of uncertainty, require more management actions?

梁文锋:DeepSeek也全是自下而上。而且我们一般不前置分工,而是自然分工。每个人有自己独特的成长经历,都是自带想法的,不需要push他。探索过程中,他遇到问题,自己就会拉人讨论。不过当一个idea显示出潜力,我们也会自上而下地去调配资源。
Liang Wenfeng : DeepSeek is also all bottom-up. Moreover, we generally do not pre-position division of labor, but natural division of labor. Everyone has their own unique growth experience and comes with their own ideas, so there is no need to push them. During the exploration process, when he encounters problems, he will invite others to discuss them. But when an idea shows potential, we will allocate resources from top to bottom.

「暗涌」:听说DeepSeek对于卡和人的调集非常灵活。
"Undercurrent": I heard that DeepSeek is very flexible in mobilizing cards and people.

梁文锋:我们每个人对于卡和人的调动是不设上限的。如果有想法,每个人随时可以调用训练集群的卡无需审批。同时因为不存在层级和跨部门,也可以灵活调用所有人,只要对方也有兴趣。
Liang Wenfeng : There is no upper limit for each of us to transfer cards and people. If you have an idea, everyone can call the card of the training cluster at any time without approval. At the same time, because there are no hierarchies or cross-departments, everyone can be flexibly called as long as the other party is also interested.

「暗涌」:一种松散的管理方式也取决于你们筛选到了一批强热爱驱动的人。听说你们很擅长从细节招人, 可以让一些非传统评价指标里优秀的人被选出来。
"Undercurrent": A loose management method also depends on you selecting a group of people who are driven by strong love. I heard that you are very good at recruiting people based on details, and can select some outstanding people based on non-traditional evaluation indicators.

梁文锋:我们选人的标准一直都是热爱和好奇心,所以很多人会有一些奇特的经历,很有意思。很多人对做研究的渴望,远超对钱的在意。
Liang Wenfeng : The criteria for choosing people have always been love and curiosity, so many people will have some strange experiences, which are very interesting. Many people's desire for research far exceeds their care of money.

「暗涌」: transformer诞生在谷歌的AI Lab,ChatGPT诞生在OpenAI,你觉得大公司的AILab 和一个创业公司对于创新产生的价值有什么不同?
"Undercurrent": Transformer was born in Google's AI Lab, and ChatGPT was born in OpenAI. What do you think is the difference in the value of innovation between a large company's AILab and a startup company?

梁文锋:不管是Google实验室,还是OpenAI,甚至中国大厂的AI Lab,都很有价值的。最后是OpenAI做出来,也有历史的偶然性。
Liang Wenfeng : Whether it is Google Labs, OpenAI, or even the AI ​​Labs of major Chinese companies, they are all valuable. In the end, OpenAI made it, and it was also a historical accident.

「暗涌」:创新很大程度也是一种偶然吗?我看你们办公区中间那排会议室左右两侧都设置了可以随意推开的门。你们同事说,这就是给偶然留出空隙。transfomer诞生中就发生过那种偶然经过的人听到后加入,最终把它变成一个通用框架的故事。
"Undercurrent": Is innovation largely an accident? I see that the row of conference rooms in the middle of your office area has doors on the left and right that can be pushed open at will. Your colleagues said that this is to leave room for chance. In the birth of transformer, there was a story where people passing by by chance heard about it and joined in, eventually turning it into a universal framework.

梁文锋:我觉得创新首先是一个信念问题。为什么硅谷那么有创新精神?首先是敢。Chatgpt出来时,整个国内对做前沿创新都缺乏信心,从投资人到大厂,都觉得差距太大了,还是做应用吧。但创新首先需要自信。这种信心通常在年轻人身上更明显。
Liang Wenfeng : I think innovation is first of all a matter of belief. Why is Silicon Valley so innovative? The first is to dare. When Chatgpt came out, the entire country lacked confidence in cutting-edge innovation. From investors to large manufacturers, everyone felt that the gap was too big, so they should just make applications. But innovation first requires confidence. This confidence is usually more pronounced in younger people.

「暗涌」:但你们不参与融资,很少对外发声,社会声量上肯定不如那些融资活跃的公司,怎么确保DeepSeek就是做大模型的人的首选?
"Undercurrent": But you don't participate in financing, rarely speak out to the outside world, and your social voice is definitely not as good as those companies that are active in financing. How can you ensure that DeepSeek is the first choice for people who want to build large models?

梁文锋:因为我们在做最难的事。对顶级人才吸引最大的,肯定是去解决世界上最难的问题。其实,顶尖人才在中国是被低估的。因为整个社会层面的硬核创新太少了,使得他们没有机会被识别出来。我们在做最难的事,对他们就是有吸引力的。
Liang Wenfeng : Because we are doing the most difficult thing. What attracts top talents the most is definitely solving the world’s most difficult problems. In fact, top talents are underestimated in China. Because there are too few hard-core innovations at the entire social level, they have no chance to be identified. We are doing the most difficult thing, which is attractive to them.

「暗涌」:前一段OpenAI的发布并没有等来GPT5,很多人觉得这是技术曲线明显在放缓,也很多人开始质疑Scaling Law,你们怎么看?
"Undercurrent": The release of OpenAI some time ago did not wait for GPT5. Many people think that the technology curve is obviously slowing down, and many people are beginning to question the Scaling Law. What do you think?

梁文锋:我们偏乐观,整个行业看起来都符合预期。OpenAI也不是神,不可能一直冲在前面。
Liang Wenfeng : We are optimistic, and the entire industry seems to meet expectations. Openai is not a god, it is impossible to rush ahead.

「暗涌」:你觉得AGI还要多久实现,发布DeepSeek V2前,你们发布过代码生成和数学的模型,也从dense模型切换到了MOE,所以你们的AGI路线图有哪些坐标?
"Undercurrent": How long do you think it will take for AGI to be realized? Before releasing DeepSeek V2, you released code generation and mathematical models, and also switched from dense models to MOE. So what are the coordinates of your AGI roadmap?

梁文锋:可能是2年、5年或者10年,总之会在我们有生之年实现。至于路线图,即使在我们公司内部,也没有统一意见。但我们确实押注了三个方向。一是数学和代码,二是多模态,三是自然语言本身。数学和代码是AGI天然的试验场,有点像围棋,是一个封闭的、可验证的系统,有可能通过自我学习就能实现很高的智能。另一方面,可能多模态、参与到人类的真实世界里学习,对AGI也是必要的。我们对一切可能性都保持开放。
Liang Wenfeng : It may be 2 years, 5 years or 10 years. In short, it will be realized in our lifetime. As for the roadmap, even within our company, there is no consensus. But we did bet in three directions. One is mathematics and code, the second is multimodality, and the third is natural language itself. Mathematics and code are the natural testing ground for AGI. It is a bit like Go. It is a closed and verifiable system, and it is possible to achieve high intelligence through self-learning. On the other hand, multi-modal learning that involves humans in the real world may also be necessary for AGI. We are open to all possibilities.

「暗涌」:你觉得大模型终局是什么样态?  "Undercurrent": What do you think the ending of the big model will be like?

梁文锋:会有专门公司提供基础模型和基础服务,会有很长链条的专业分工。更多人在之上去满足整个社会多样化的需求。
Liang Wenfeng : There will be specialized companies providing basic models and basic services, and there will be a long chain of professional division of labor. More people can meet the diverse needs of society as a whole.

所有的套路都是上一代的产物  All routines are products of the previous generation

「暗涌」:过去这一年,中国的大模型创业还是有很多变化的,比如去年开头还很活跃的王慧文中场退出了,后来加入的公司也开始呈现出差异化。
"Undercurrent": In the past year, there have been many changes in China's large model entrepreneurship. For example, Wang Huiwen, who was active at the beginning of last year, withdrew from the company mid-term, and the companies he joined later began to show differentiation.

梁文锋:王慧文自己承担了所有的损失,让其他人全身而退。他做了一个对自己最不利,但对大家都好的选择,所以他做人是很厚道的,这点我很佩服。
Liang Wenfeng : Wang Huiwen took all the losses and let others escape unscathed. He made a choice that was most detrimental to himself but best for everyone, so he is a very kind person, which I admire very much.

「暗涌」:现在你的精力最多放在哪里?  "Undercurrent": Where do you focus most of your energy now?

梁文锋:主要的精力在研究下一代的大模型。还有很多未解决的问题。
Liang Wenfeng : The main focus is on researching the next generation of large models. There are still many unanswered questions.

「暗涌」:其他几家大模型创业公司都是坚持既要又要,毕竟技术不会带来永久领先,抓住时间窗口把技术优势落到产品也很重要,DeepSeek敢于专注在模型研究上是因为模型能力还不够吗?
"Undercurrent": Several other large model startups insist on having both. After all, technology will not bring permanent leadership. It is also important to seize the time window to put the technical advantages into products. DeepSeek dares to focus on model research. Is it because the model capability is not enough?

梁文锋:所有的套路都是上一代的产物,未来不一定成立。拿互联网的商业逻辑去讨论未来AI的盈利模式,就像马化腾创业时,你去讨论通用电气和可口可乐一样。很可能是一种刻舟求剑。
Liang Wenfeng : All routines are products of the previous generation and may not be valid in the future. Use the business logic of the Internet to discuss the future profit model of AI, just like when Ma Huateng started his business, you discussed General Electric and Coca-Cola. It is probably a kind of carving a boat to seek a sword.

「暗涌」:过去幻方就有很强的技术和创新基因,成长也比较顺利,这是你偏乐观的原因吗?
"Undercurrent": In the past, Huanfang had strong technology and innovation genes, and its growth was relatively smooth. Is this why you are optimistic?

梁文锋:幻方某种程度上增强了我们对技术驱动型创新的信心,但也不都是坦途。我们经历了一个漫长的积累过程。外部看到的是幻方2015年后的部分,但其实我们做了16年。
Liang Wenfeng : Magic Square has enhanced our confidence in technology-driven innovation to some extent, but it is not always a smooth road. We have gone through a long accumulation process. What we see from the outside is the part of Magic Square after 2015, but in fact we have been doing it for 16 years.

「暗涌」:回到关于原创式创新的话题。现在经济开始进入下行,资本也进入冷周期,所以它对原创式创新是否会带来更多抑制?
"Dark": Back to the topic about original innovation. Now that the economy has begun to fall, capital also enters the cold cycle, so will it bring more suppression of original innovation?

梁文锋:我倒觉得未必。中国产业结构的调整,会更依赖硬核技术的创新。当很多人发现过去赚快钱很可能来自时代运气,就会更愿意俯身去做真正的创新。
Liang Wenfeng : I don't think it is necessary. The adjustment of China's industrial structure will rely more on the innovation of hardcore technology. When many people find that in the past, they are likely to come from the times, and they will be more willing to lean down to do real innovation.

「暗涌」:所以你对这件事也是乐观的?  "Dark Surging": So are you optimistic about this?

梁文锋:我是八十年代在广东一个五线城市长大的。我的父亲是小学老师,九十年代,广东赚钱机会很多,当时有不少家长到我家里来,基本就是家长觉得读书没用。但现在回去看,观念都变了。因为钱不好赚了,连开出租车的机会可能都没了。一代人的时间就变了。
Liang Wenfeng : I grew up in a fifth -tier city in Guangdong in the 1980s. My father was a primary school teacher. In the 1990s, there were many opportunities to make money in Guangdong. At that time, many parents came to my house. Basically, parents felt that reading was useless. But now when I go back, my concept has changed. Because the money is not easy to make, even the chance of driving a taxi may be gone. The time of a generation has changed.

以后硬核创新会越来越多。现在可能还不容易被理解,是因为整个社会群体需要被事实教育。当这个社会让硬核创新的人功成名就,群体性想法就会改变。我们只是还需要一堆事实和一个过程。
There will be more and more hard-core innovations in the future. It may not be easy to understand now because the entire social group needs to be educated on the facts. When this society allows hard-core innovative people to become successful, group thinking will change. We just need a bunch of facts and a process.

评论

此博客中的热门博文

查理·芒格晚年不为人知的故事

 华尔街日报: 查理·芒格 在加州蒙特西托拥有一栋可以欣赏壮丽海景的房子。 伯克希尔·哈撒韦公司   增加;绿色向上指向三角形 副董事长亲自设计了整个封闭式社区,当地人称之为“芒格维尔”。他曾告诉一位朋友,他希望在那里度过余生。 芒格并没有选择离开,而是留在他在洛杉矶的家中。那房子甚至没有空调。三年前的一次热浪中,朋友们送来了电风扇和冰块,帮他给书房降温。 芒格并不在意。这处住所离他喜欢的人很近,而且能让他参与到一些充满挑战的项目中。芒格并没有选择在海边过平静的生活,而是将晚年投入到大胆的投资、建立意想不到的友谊以及迎接新的挑战中。 两年前 ,芒格去世时 ,距离他 100 岁 生日还有几周。这位亿万富翁投资者是美国最受爱戴的商人之一,他以其机智和智慧而闻名,并因其帮助 沃伦·巴菲特 将伯克希尔·哈撒韦公司打造成一家万亿美元公司而备受赞誉。 芒格人生最后一段出人意料的经历鲜为人知。在他去世前一年,他押注于一个他曾避之不及60年的冷门行业,从中获利超过5000万美元。他重振房地产业务,与一位年轻的邻居合作,进行大手笔的长期投资,这对于一位九旬老人来说实属罕见。他克服了健康挑战,并努力应对未来。 “甚至在他去世前一两周,他还在问一些问题,比如‘摩尔定律在人工智能时代是否适用?’”他的朋友杰米·蒙哥马利回忆道,他指的是人工智能是否会像计算能力那样获得指数级增长。 朋友和家人说,芒格充满波折的晚年生活为投资者提供了经验教训,也为如何优雅、平静、有目标地老去提供了蓝图。 “直到他去世的那一天,他的思维都从未停止过运转,”芒格的继子哈尔·博斯威克说。“他从未停止过学习。” 芒格毕业于哈佛法学院,曾与人共同创立了位于洛杉矶的芒格、托尔斯和奥尔森律师事务所。1962年,他辞去律师职务,专注于投资。后来,他关闭了大部分投资合伙企业,并于1978年加入伯克希尔哈撒韦公司,担任副董事长。 芒格成为了巴菲特的 顾问和智囊 ,他敦促巴菲特 放宽投资范围, 不再局限于低价投资,而是购买高质量的公司。  “在商业决策上,查理和我是可以互换的,”巴菲特 在1982年说道 。 巴菲特拒绝就本文置评。 沃伦·巴菲特(左)和查理·芒格于2019年出席伯克希尔·哈撒韦公司年度股东大会。   图片来源:JOHANNES EISELE/AFP VIA GETTY IMAGE...

谷歌,全球人工智能竞赛中的沉睡巨人,如今“完全觉醒”

 BBG: 自三年前 ChatGPT 推出以来,分析师和技术专家——甚至包括 谷歌工程师 和该公司 前首席执行官 ——都宣称谷歌在人工智能开发这场高风险竞赛中落后了。 不再。 这家互联网巨头发布了新的人工智能软件,并达成了一系列合作协议,例如与 Anthropic PBC 的 芯片合作 ,这些举措让投资者相信,谷歌不会轻易败给 ChatGPT 的开发者 OpenAI 和其他竞争对手。谷歌最新的多用途模型 Gemini 3 因其在推理和编码方面的能力,以及在人工智能聊天机器人难以完成的特定任务方面的表现,立即赢得了赞誉。谷歌的云业务曾经默默无闻,如今却稳步增长,这在一定程度上得益于全球对人工智能服务的开发热潮和对计算能力的需求。 种种迹象表明,市场对谷歌专用人工智能芯片的需求正在上升,这些芯片是为数不多的能够替代英伟达主导地位的芯片的方案之一。周一有报道称,Meta Platforms公司正在洽谈使用谷歌的芯片,这一消息推动了其母公司Alphabet Inc.的股价上涨。自10月中旬以来,Alphabet的市值已增长近1万亿美元,这得益于沃伦·巴菲特在第三季度斥资 49亿美元 购入Alphabet的股份,以及华尔街对其人工智能业务的普遍热情。 周二,Alphabet 股票在纽约上涨 1.5%,至 323.44 美元,使该公司市值接近 4 万亿美元。 软银集团是OpenAI最大的支持者之一,周二股价 下跌10% ,原因是市场担忧谷歌Gemini的竞争。英伟达股价下跌2.6%,市值蒸发1150亿美元。 “可以说,谷歌一直是人工智能竞赛中的一匹黑马,”Counterpoint Research的分析师兼联合创始人尼尔·沙阿表示。“它就像一头沉睡的巨人,如今已完全苏醒。” 多年来,谷歌高管一直认为,深入且耗资巨大的研究能够帮助公司抵御竞争对手,巩固其作为领先搜索引擎的地位,并打造面向未来的计算平台。然而,ChatGPT 的出现,对谷歌搜索构成了多年来的第一个真正威胁,尽管谷歌是 OpenAI 聊天机器人底层技术的先驱。尽管如此,谷歌仍然拥有 OpenAI 所不具备的大量资源:可用于训练和优化人工智能模型的海量现成数据;源源不断的利润;以及自身的计算基础设施。 谷歌和Alphabet首席执行官桑达尔·皮查伊上个季度告诉投资者:“我们对人工智能采取了全面、深入、全栈式的方...

“标普493指数”揭示了截然不同的美国经济

华邮: 从表面上看,2025年对股市来说是丰收的一年。标普500指数在春季因关税政策而 陷入低迷,但 少数几家 人工智能领军企业的强劲表现将其从低迷的经济环境中拉了出来,这些企业的惊人涨幅逆势而上。即使到了现在,尽管11月市场波动较大,但该基准指数自年初以来仍上涨了超过12%。 被称为“七大巨头”的七家市值万亿美元的公司——Alphabet、亚马逊、苹果、Meta、微软、英伟达和特斯拉——一直处于这股增长浪潮的前沿,这在很大程度上要归功于企业对人工智能的巨额投入和浓厚兴趣。但经济学家和投资者对那些并未参与人工智能投资热潮的公司——换句话说,就是美国的大多数企业——表示担忧。 如果剔除七家高速发展的科技公司,将其称为标准普尔 493 指数,则呈现出截然不同的景象,规模较小、技术含量较低的公司销售额低迷,投资下降。 穆迪分析公司首席经济学家马克·赞迪表示:“全球化进程面临去全球化和关税的逆风,而人工智能则带来顺风……这些力量正在相互较量,最终难分胜负,在这种交锋中,有人欢喜有人愁。任何与人工智能无关的事物都会受到限制。” 2022年底,OpenAI发布了聊天机器人ChatGPT,引发了人工智能投资热潮,一些为新算法提供基础设施和支持的科技公司——这些公司就像是人工智能淘金热的“镐和铲子”——也搭上了这股浪潮。(《华盛顿邮报》与OpenAI有内容合作关系。) 自那以后,人工智能领域的支出极大地推高了“七巨头”的估值。英伟达(Nvidia)是一家长期生产视频游戏显卡的公司,如今已成为人工智能芯片的首选制造商。截至上周五收盘,自2023年1月以来,英伟达的股价已飙升超过1000%。今年的增长速度有所放缓——英伟达2025年的股价预计上涨29%——而亚马逊、Meta和特斯拉的股价增长则趋于平稳。(亚马逊创始人杰夫·贝佐斯拥有《华盛顿邮报》。) 数据公司 Palantir 凭借其帮助大型企业将人工智能应用于运营的策略,开辟了一片新天地,自年初以来市值翻了一番。美光科技 (Micron) 的内存芯片表现强劲,股价上涨超过 130%;总部位于俄亥俄州的 Vertiv 公司数据中心冷却系统业务也推动股价上涨 35%。芯片制造商英特尔 (Intel) 尽管裁员数千人,股价仍上涨了 70%。 一些专家担心,标普 500 指数(一个由大型公司股票组成的指数,支撑着数百万拥有 401(k) ...

为什么投资者越来越悲观?

  英伟达最先进芯片的销量 “远超预期”,黄仁勋在11月19日公布公司史上最高的季度营收时表示。这位全球市值最高公司的掌门人可谓喜事连连。截至10月份的三个月内,公司营收高达570亿美元,毛利率超过70%——这简直是投资者梦寐以求的业绩。然而,第二天英伟达的股价却下跌了3%。目前,其股价较10月份的峰值下跌了13%。 整个市场的股东情绪已从乐观转向 悲观 。多年来,股市持续飙升,这主要得益于人们对人工智能将大幅提升利润的预期——但大多数专业投资者现在认为这种预期过于乐观。从长远来看,近期的抛售尚在可承受范围内。尽管 标普 500指数自10月份的峰值以来下跌了4%,但自2022年的低点以来也上涨了84%。然而,在利好消息不断的情况下,股市下跌却是一个令人担忧的信号,表明长期的牛市可能最终会失去动力。交易员们神经紧绷,未来一周将密切关注抛售可能加速的迹象。 一个警示信号已经亮起:市场似乎对如何解读新的发展趋势异常犹豫不决。例如,在英伟达发布财报后的第二天早上,该公司股价飙升近5%, 标 普 500指数和 纳斯达克 指数 (一个科技股为主的指数)也随之上涨,但随后三大股指均开始回落,最终收跌。与此同时, 衡量交易员预期 标 普500 指数波动幅度的 VIX指数 (也被称为华尔街的“恐慌指数”)波动剧烈。VIX指数读数为20意味着,交易员认为一年后该股指的价格可能在当前水平上下20%之间波动。通常情况下,这一预测值每日波动幅度不超过一两个百分点。但在11月20日,VIX指数在不到三个小时内就从19飙升至28。换句话说,投资者不再相信即使像英伟达那样亮眼的业绩也能继续推高股价,因为估值已经上涨了太多。 另一个警示信号是投资者常用的避险资产变得不再可靠。诚然,近来美元重拾避险地位并走强(与4月份特朗普总统宣布“解放日”后美元与股市一同暴跌的情况截然不同)。但作为传统避险资产的黄金价格在10月份达到峰值后 下跌了 7%,在上周的市场动荡中几乎没有波动。近年来,黄金价格持续飙升,10月份的峰值创下历史新高,引发了人们对贵金属泡沫的担忧。如果投资者无法依靠黄金对冲风险资产的损失,那么下一次崩盘将会非常惨痛。 第三个不祥之兆是不同资产价格之间“正常”相关性的瓦解。目前,日本正是此类担忧的焦点。日元——曾经的避险货币——在上周的动荡中遭到抛售,与此同时,亚洲股市也下跌,日本的借贷...

付鹏11月24日在HSBC内部演讲速记

《2024年年终回顾和2025年展望——对冲风险VS软着陆》   上篇 正值年底,虽然刚才汇丰一直强调大家不录音不录像,但大概率你挡不住。我在这儿讲话会谨慎一些,非常小心谨慎,大概率会有人透露出去,放到YouTube上,基本上所有见我都说付总我在YouTube上看过你的视频,我说那都是盗版的,靠盗版发财的也不少。 今天和大家分享的内容基本上都是官方的,回顾会多一点,展望不多,因为这个月展望完了之后下个月怎么办?有些话对我来讲我倒觉得很简单,本质上原来我们是做Hedge Fund出身,所以我们的逻辑框架整体具有极强的延续性,不是说今年去讨论,或者说明年去讨论。 惯性思维从2016年开始,我一直在跟大家强调这个世界已经完全不一样了。当然经历过过去的几年时间,我相信在座各位应该对这番话的理解变得越发深刻。 2016年实际上是美国特朗普的第一次大选,我有一个特点,我的特征是如果我觉得什么地方有投资机会,我可能第一时间去一线调研,我不喜欢看YouTube,我也不喜欢在网上扒。当然你会说,现在ChatGPT很强大了,人工智能好像能帮你解决很多问题,但你们有没有想过,可能广泛流传或者广泛传播的很多信息是错的。这一点在2012年当时我从日本做完调研回来之后,我的感悟是最深的。 当然去日本有一个重要的人物,名字叫本森特,很快大家就会非常熟悉他的,目前来讲应该是特朗普政府提名的美国财长。本森特原来是索罗斯基金实际掌控人,因为索大爷已经年龄很大了,去年的时候才刚刚把基金的业务交给他儿子亚历山大,但在这之前,最主要的几场战役本质上来讲都是本森特在主导。 2012年当时我从北京去香港约朋友们吃饭的饭局上,当时斯索罗斯基金在香港办公室跟我说,本森特从这儿去了日本。我说OK。我经常说一句话“站在巨人的肩膀上看问题。” 当然你知道,网民们最可怕的地方是巴菲特“SB”、索罗斯“SB”,我最“牛逼”。你要记住,他们的所有行为一定有很大的变化,很多人可能都不知道,巴菲特第一次去是2011年,我们正在讲福岛核电站泄漏,核废水污染以后海鲜不能吃的时候,一个80多岁的老头顶着核辐射泄漏去日本吃海鲜了,当然他去日本干吗,这其实很关键。 之后我们跑到日本做完调研回来之后那几年,我陆陆续续跟很多人讲,日本正在发生变化,日本的利率结构都会随之变化的,当然包括日本的证券市场。今年日本股市终于走出这35年了,创下...

中国医药产业正处于走向全球化的开端

经济学人: 继美国之后 ,中国是全球最大的新药研发国,去年中国企业开展了全球约三分之一的临床试验。十年前,这一比例仅为5%(见图表1)。中国在癌症等关键研究领域也正迅速崛起,成为领军者。投资者已注意到这一点。今年以来,中国生物科技公司的股价已飙升110%,是美国同行涨幅的三倍多。 在过去一个世纪的大部分时间里,药物研发一直由西方公司主导,这些公司通常被统称为“大型制药公司”。如今,这种情况已不复存在。这些公司正面临着历史上最严峻的“专利悬崖”挑战,预计未来六年总收入将超过3000亿美元的药物将在2030年失去专利保护。为了填补这一空白,欧美大型制药公司正在全球范围内搜寻有前景的分子,而且越来越多地在中国找到了这些分子。 时机颇为尴尬。美国希望减少对中国供应链的依赖,因为 中美贸易战目前 只是暂时中止。例如,美国政府已经开始担忧中国对活性药物成分的垄断。坊间传闻白宫计划对中国制药企业采取强硬措施,尽管目前尚未有任何实际行动。然而,在研发下一代药物方面,美国的制药企业及其患者对中国创新技术的依赖程度很可能会加剧,而不是降低。 越来越多的证据表明了这一点。今年5月,美国最大的制药公司辉瑞同意向中国生物技术公司3SBio支付12.5亿美元的费用,以获得在中国境外生产和销售一种实验性抗癌药物的权利(如果获得批准)。次月,其英国竞争对手葛兰素史克与另一家中国公司恒瑞达成了一项价值5亿美元的协议,获得一种肺部疾病治疗药物的授权,以及购买另外11种药物的选择权。这些药物的总价值可能高达120亿美元,具体取决于某些里程碑的达成情况。此类交易已不再是例外。今年上半年,大型制药公司签署的全球许可协议中,近三分之一是与中国公司签署的——是2021年这一比例的四倍。 直到最近,中国医药产业还以生产仿制药、供应原料药和为西方公司进行临床试验而闻名。过去十年间,它实现了彻底的转型。审批流程得到简化,针对危重疾病的药物实行优先审评,监管标准也更加贴近国际标准。2015年至2018年间,中国药品监管机构的员工人数增长了四倍,仅两年就清理了积压的2万份新药申请。获得人体试验批准所需​​的时间从501天缩短至87天。新药产量也大幅增长。2015年,中国仅批准了11种疗法,其中大部分是西方进口药物。到2024年,这一数字将上升至93种,其中42%为国产药物。 这些改革措施与吸引曾在海外留学或工作的学生和专...

中国接下来将主导什么领域?

 经济学人: 那些担忧如何应对中国在科技领域领先地位的人——这样的人不在少数——往往会想到电动汽车、 太阳能电池板和开源人工智能。但对于这些人,我们有一些坏消息要告诉他们。 本周 ,我们将报道中国如何在另外两项前沿技术领域——自动驾驶汽车和新药——迅速取得进展。随着这些产业在全球范围内的发展,它们将充分展现中国强大的创新能力。 中国在这些重要领域的进步令人瞩目。 无人驾驶出租车革命正在加速发展 ,这可能会重塑交通运输、物流和都市日常生活。中国的无人驾驶出租车造价仅为美国Waymo的三分之一,行驶里程已达数百万公里,并在欧洲和中东地区建立了合作关系。与此同时,在医药领域,中国已从仿制药生产国转型为全球第二大新药研发国,其中包括抗癌药物。西方竞争对手正在获得中国企业的授权许可。中国诞生医药巨头的日子似乎不再遥远。 这两个行业的崛起充分体现了中国创新的运作模式。深厚的人才储备、广泛的制造业基础和巨大的规模共同推动其在价值链上快速攀升。 无人驾驶出租车的生产 得益于电动汽车的大规模生产以及在 激光 雷达和其他自动驾驶所需传感器供应方面的优势;规模化生产也有助于降低成本。大量患者参与临床试验以及仿制药生产带来的利润加速了医药行业的创新。 中国成功的关键因素中,更令人惊讶的是其灵活且宽松的监管机制。与其他行业一样,地方政府为企业提供低息贷款和其他方面的帮助。但真正推动发展的,是其高效的规则制定。2016年,中国领导人提出要成为“生物技术超级大国”的目标后不久,便实施了一系列改革。2015年至2018年间,药品监管机构的人员规模增长了四倍,仅两年时间就清理了积压的2万份新药申请。获得人体试验批准所需​​的时间从501天缩短至87天。去年,中国企业 开展了全球三分之一的临床试验 。 同样,中国也较早开始尝试无人驾驶出租车。为了吸引人才和投资,地方政府迅速批准了试点项目,并安装了传感器和其他数字基础设施来引导自动驾驶车辆;目前已有超过50个城市开展了试点。许多地方政府也尝试制定了责任认定法律和测试指南。尽管事故有时会造成项目暂停,但试点计划帮助工程师和政策制定者更好地了解这项新技术。 国内残酷的竞争给单个企业带来了严峻的考验,但幸存者却被训练成极具竞争力的出口冠军。在中国,自动驾驶出租车运营商不仅要与其他运营商竞争,还要与廉价的人工驾驶出租车竞争,而此时经济正遭受通货紧缩的困...

大型科技公司的花招融资方式骗不了任何人

 BBG: 雄心壮志是要付出代价的。随着科技公司竞相构建人工智能基础设施,那些采取创新融资方式的公司正受到信贷市场的惩罚。 速度与激情 大型科技公司正从信贷市场筹集数十亿美元。 来源:彭博社 注:1. 元相关:Beignet 270亿美元的融资;2. 与Oracle相关的:待定的380亿美元Vantage贷款和180亿美元BorderPlex贷款。 例证A是Meta Platforms公司在路易斯安那州乡村地区建设的大型数据中心项目,该项目采用表外融资方式。该公司与私募股权公司Blue Owl Capital Inc.成立了一家合资企业,并持有20%的少数股权。而 真正借款270亿美元 的并非Meta公司,而是合资企业中的控股股东——一家名为Beignet Investor的特殊目的实体。在交易完成之前,这家科技巨头曾联系穆迪评级和标普全球,以 确保这种融资结构不会损害其投资评级 。 尽管这些债券最初是私募发行,但贝涅特最终将其出售给了太平洋投资管理公司(PIMCO)和贝莱德集团等普通投资者基金。PIMCO为此交易 承诺投资180亿美元 ,但要求更高的收益率和担保作为交换。这支25年期债券的票面利率为6.6%,比Meta公司同期限的公司债券高出约一个百分点。 溢出 Meta的债券在其合资企业发行270亿美元债券后被抛售。 来源:彭博社 Meta的债券随后遭到抛售。这是因为像Pimco这样的固定收益管理公司,尽管可以投资于公共和私人债券,仍然将Beignet视为Meta的子公司。毕竟,这家科技巨头已经同意,如果Beignet选择不续租数据中心,将承担其合资企业的未偿债务。由于资产管理公司已经购买了数十亿美元的Beignet债券,因此不得不降低风险,出售部分Meta的持股。 再来看看甲骨文公司,这家公司是迄今为止最激进的超大规模数据中心运营商。预计明年其资本支出将达到运营现金流的138%,远超排名第二的Meta的84%。近来,其五年期信用违约互换(本质上是一种企业债务保险)的成本大幅上涨。 购买保险 甲骨文公司的信用违约互换价格飙升 来源:彭博社 此次融资激增很可能是由于银行和甲骨文公司商业伙伴的对冲需求所致。数十家贷款机构正忙于安排巨额贷款,为由OpenAI公司、软银集团和甲骨文公司牵头的雄心勃勃的“星门”(Stargate)项目提供资金,该项目旨在迅速在美国...

人工智能产业建立在一个未经证实的巨大假设之上

 BBG: 人工智能的蓬勃发展让许多人开始担忧,例如:“这项技术会抢走我的工作吗?如果会,那会多久发生?”一些会计师也提出了他们自己令人担忧的问题:“科技公司是否错误地计算了图形处理器的折旧周期?” 虽然这个问题没有那么深刻的意义,但回答这个问题对于理解人工智能市场的财务可持续性大有裨益。 用于训练和运行最先进的大型语言模型的GPU芯片是人工智能公司最大的成本之一。大多数公司都在借贷,尽可能快地购买尽可能多的GPU。与此同时,会计准则要求他们估算这些芯片的保值期。选择较长的保值期可以将成本分摊到更长的时间内,从而使公司能够报告更高的当前利润。但是,如果声称设备可以使用六年,而实际上四年内其价值几乎就会完全丧失,那就存在风险。公司可能不得不比预期更早地购买新的、甚至更昂贵的芯片。与此同时,任何以这些如今已报废的芯片作为抵押的贷款都可能变得复杂。至少,公司可能不得不对过时设备的价值进行减记,从而对利润造成一次性打击。 任何一项都可能给企业带来麻烦。如果许多公司同时犯同样的错误,就可能引发更大的危机。如果整个人工智能行业的盈利能力远不如表面看起来那么高,贷款风险远超表面,未来面临的资本成本也远超其承认的水平,那又该怎么办? 问题在于,目前还没有客观的衡量标准来评估一块五年前的GPU对人工智能公司究竟价值几何。毕竟,ChatGPT才问世三年左右。“每个人都说,‘我不知道该如何为GPU融资,因为我不知道它能用多久,’”  ChatGPT母公司OpenAI的首席财务官 Sarah Friar说道。 人工智能军备竞赛促使所有构建人工智能基础设施的企业采取最激进的财务策略。会计准则赋予企业一定的折旧计算灵活性,大多数企业都认为GPU的使用寿命只有五到六年。在不同的监管环境下,美国证券交易委员会(SEC)可能会提出尖锐的问题,以检验这些估算所依据的假设是否合理。但据新泽西州蒙特克莱尔州立大学会计 学兼职讲师 弗朗辛·麦肯纳 (Francine McKenna )称,在 唐纳德·特朗普总统的领导下,SEC采取了放任不管的态度。麦肯纳撰写了一篇 颇受欢迎的会计博客 。她说:“我们身处一个充满挑战、瞬息万变、技术飞速发展的环境中,而SEC却对此漠不关心。” 即使公司决策并非完全错误,也可能对其资产负债表产生重大影响,尤其是在GPU投资规模如此庞大的情况下。“即使折旧政策发...

中国为何需要允许人民币升值

 FT: 单伟健是PAG的执行主席,PAG是一家专注于亚洲的私募股权公司。 人民币被低估了。日常生活中到处都是证据:香港居民,由于其货币与美元紧密挂钩,周末纷纷涌向深圳购物,那里的物价只有香港的一半。 《经济学人》的巨无霸指数显示,一个麦当劳巨无霸在美国的售价为6.01美元,而在中国仅售25.5元人民币(约合3.60美元),这意味着人民币被低估了约41%。这个以汉堡价格为基准的轻松幽默的指数与国际货币基金组织(IMF)更为正式的购买力平价估值结果非常接近,后者显示人民币对美元被低估了约50%。 2024年,中国以美元计价的名义GDP为19万亿美元,约为美国GDP(29万亿美元)的65%。然而,国际货币基金组织(IMF)的数据显示,按购买力平价计算,中国GDP为38万亿美元,比美国高出31%。由此看来,未来五年内人民币逐步升值至少50%,将目前的低估幅度缩小至25%以下,对中国而言既可行又有利。稳定的升值将提振国内消费,并改善贸易关系。 在浮动汇率制度下,理论上货币价值应进行调整以恢复国际收支平衡。除非资本账户失衡能够抵消,否则经常账户赤字会引发货币贬值——出口价格下降,进口价格上涨——直至赤字收窄。盈余则会促使货币升值,从而逆转这一趋势。然而,中国已连续32年保持经常账户盈余,远远超过其资本账户赤字,并积累了3.3万亿美元的外汇储备。 任何央行都无法对抗市场力量,但它可以有效地塑造市场预期,引导市场回归基本面。历史提供了先例。1993年,人民币兑美元的非官方汇率一度跌至11元人民币(而官方汇率为5.8元人民币)。1994年1月1日,中国统一实行双轨制,人民币兑美元汇率为8.7元人民币,这是一次意义重大的升值。此后三十年间,人民币汇率从未低于这一水平。 同样,在1997-98年亚洲金融危机期间,当大多数地区货币暴跌时,中国承诺不贬值人民币,保持人民币汇率稳定,赢得了广泛的信任。在2008-09年全球金融危机期间,中国再次重申了这一决心。当北京展现出明确的承诺时,市场就会跟随——而强势货币会形成自我强化的良性循环。 尽管自2023年以来中国GDP保持了5%的年均稳定增长,但为确保经济可持续增长,中国亟需降低对出口的依赖,转向内需。人民币走强将有助于降低进口成本,提高家庭购买力,从而将消费在经济增长中的占比从目前的约53%提升至2023年的86%。 怀疑论者援引日...